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A theoretical and experimental investigation of
indirectly excited roll motion in ships

By I. G. O h, A. H. Nayfeh a n d D. T. M o o k

Department of Engineering Science and Mechanics, MC 0219,
Virginia Polytechnic Institute and State University (VPI & SU),

Blacksburg, VA 24061, USA

The phenomenon of indirectly exciting the roll motion of a vessel due to nonlinear
couplings of the heave, pitch and roll modes is investigated theoretically and ana-
lytically. Two nonlinear mechanisms that cause large-amplitude rolling motions in a
head or following sea are investigated. The ­ rst mechanism is internal or autopara-
metric resonance and the second is parametric resonance. The energy put into the
pitch and heave modes by the wave excitations may be transferred into the roll mode
by means of nonlinear coupling among these modes; thus, the roll can be indirectly
excited. As a result, a ship in a head or following sea can spontaneously develop
severe rolling motion. In the analytical approach, the method of multiple scales is
used to determine a system of nonlinear ­ rst-order equations governing the modula-
tion of the amplitudes and phases of the system. The ­ xed-point solutions of these
equations are determined and their bifurcations are investigated. Hopf bifurcations
are found in the case of two-to-one internal resonance. Numerical simulations are
used to investigate the bifurcations of the ensuing limit cycles and how they produce
chaos. Experiments are conducted with tanker and destroyer models. They demon-
strate some of the nonlinear e¬ects, such as the jump phenomenon, the subcritical
instability, and the coexistence of multiple solutions. The experimental results are in
good qualitative agreement with the results predicted theoretically.

Keywords: roll instability; internal resonance;
motion coupling; saturation; experiments

1. Introduction

Around the middle of the 19th century, Froude (1863) observed that a ship whose nat-
ural frequency in pitch is twice its natural frequency in roll has undesirable seakeeping
characteristics. Nearly a century later, Robb (1952) collected full-scale data on board
a ship, which exhibit a continuous exchange of energy back and forth between the
pitch and roll modes even though the wave motion was relatively constant. It appears
that no further research on these phenomena was pursued until Kerwin (1955) used
the Mathieu equation to study wave-excited roll motions. Paulling & Rosenberg
(1959) then developed a set of nonlinearly coupled equations of motion to represent
the motion of a vessel that was free only to pitch and roll. They neglected damping,
the nonlinear e¬ect of the roll mode on the pitch moment, and forcing terms, and
derived the Mathieu equation, which they used to show that unstable roll motions
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can occur for certain frequency ratios. Kinney (1961) added a linear damping term
to the roll equation and essentially repeated their analysis.

Bass (1982) investigated the in®uence of heave-induced variations of the metacen-
tric height, which depends on time and roll angle, on the response of a biased ship
in large-amplitude beam waves. Blocki (1980) added nonlinear damping and a non-
linear restoring moment to the roll equation and used the result to investigate the
probability of capsizing. Feat & Jones (1984) used a simple Du¯ ng-type oscillator
with a softening cubic nonlinearity as a model for heave-induced roll motions.

Extending Blocki’s work, Sanchez & Nayfeh (1990) investigated the qualitative
behaviour of rolling in head or following waves. They used an analytical{numerical
technique based on the method of multiple scales to predict the qualitative changes
taking place as one of the parameters is slowly changed. They con­ rmed their results,
which included complicated responses, by using both analogue and digital computer
simulations.

Kerwin (1955), Paulling & Rosenberg (1959), Kinney (1961), Bass (1982), Blocki
(1980), Feat & Jones (1984) and Sanchez & Nayfeh (1990) studied the case of para-
metrically excited roll motions in which energy is fed to the roll mode by a prescribed
pitch or heave motion, or, equivalently, head or following wave motion. However, their
studies did not take into account the in®uence of the roll motion on the pitch and
heave motions.

To explain the connection between the frequency ratio and the undesirable sea-
keeping characteristics, Nayfeh et al . (1973) used model equations that couple the
pitch mode to the roll mode by including the dependence of the pitching moment on
the roll orientation. Thus, the pitch (heave) motion is not prescribed but is coupled
to the roll motion, and, consequently, the pitch (heave) and roll motions are deter-
mined simultaneously as functions of a prescribed excitation. They found that the
pitch (heave) motion exhibits a `saturation’ phenomenon. They o¬ered an explana-
tion of the observation of Froude.

Nayfeh & Mook (1979) pointed out that the coupled pitch{roll problem is math-
ematically similar to that of describing the forced response of many elastic and
dynamic systems, such as elastic pendulums, beams, arches, composite plates, and
shells. All lead to systems of coupled, inhomogeneous ordinary di¬erential equa-
tions with quadratic nonlinearities. Steady-state solutions of such systems exhibit
particularly complicated behaviour when their linear undamped natural frequencies
are commensurate; that is, when these systems possess internal (autoparametric)
resonances. The undesirable seakeeping characteristics which Froude spoke of are
manifestations of rather general behaviour that occurs in a wide variety of nonlinear
physical systems. Working with structural models, Haddow et al . (1984), Nayfeh
& Zavodney (1988) and Balachandran & Nayfeh (1991) found some of the same
characteristics experimentally in structural responses. They observed the saturation
phenomenon, the continuous exchange of energy back and forth between two modes
coupled by an internal resonance (stable steady-state responses do not exist) when
the excitation is a simple harmonic function, and chaos at larger amplitudes.

Many investigators studied the cases described above. Among them, Mook et al .
(1974) used the method of multiple scales to analyse a simple system of two coupled
oscillators with quadratic nonlinearities as a model for the coupling of pitch and roll
motions. They showed that the popular approach of using Taylor-series expansions
to model the hydrodynamic forces in deriving the governing equations can lead to
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physically unrealistic self-sustained oscillations; they obtained more realistic equa-
tions using an energy approach. They demonstrated the existence of a saturation
phenomenon when !2 º 2!1 and « º !2, where the !n are the linear natural fre-
quencies and « is the excitation frequency. Moreover, when !2 º 2!1 and « º !1,
they showed that there are conditions for which stable periodic steady-state motions
do not exist. Instead, there exist amplitude- and phase-modulated motions in which
the energy is continuously exchanged between the two modes. Nayfeh (1988) con-
sidered nonlinearly coupled roll and pitch motions in regular head waves in which
the couplings are primarily in the hydrostatic terms when the pitch frequency is
approximately twice the roll frequency and the encounter frequency is near either
the pitch or the roll natural frequency. He demonstrated the saturation phenomenon
when the encounter frequency is near the pitch natural frequency and demonstrated
the existence of a Hopf bifurcation. He showed that initially only the pitch mode was
excited, but as the wave height increased, the pitch mode saturated and energy was
transferred to the roll mode. He also found a Hopf bifurcation in the response when
the encounter frequency is near the roll frequency.

Next, we consider the two (parametric and autoparametric) mechanisms respon-
sible for the roll instability, starting with the parametric mechanism.

2. Parametric excitation of roll motion

One of the mechanisms causing large-amplitude roll motions is the direct excitation
of the roll mode by beam waves. The problem can be mathematically modelled by
a single-degree-of-freedom roll equation having nonlinearities, constant coe¯ cients,
and an external forcing term. This mechanism of roll motion is readily understood.

Roll motion can occur even when it is not directly excited. When a vessel is in
either following or head waves, violent rolling motion can occur due to parametric
excitations that result from the heave{pitch{roll coupling. The excitation energy
input to the pitch or heave mode may be transferred into the roll motion due to
nonlinear coupling among these modes. The vessel can then exhibit a large-amplitude
roll motion as well as heave and pitch motions.

Knowledge of this phenomenon is not new. Although some real experiences of
rolling in head seas were reported by crews, it was believed for a long time that a
vessel moving into the oncoming waves would exhibit only heave and pitch motions.
In other words, a system excited by in-plane excitations will respond with in-plane
modes of motion only, which is the linear result. Oh et al . (1992), however, found
both theoretically and experimentally that this is not always true. Instead, a vessel
encountering following or head waves may respond with an out-of-plane motion (roll),
which can be critical to the safety of the vessel, as well as the in-plane modes of
motion (heave and pitch). We summarize these results in this section.

(a) Theoretical analysis

In the traditional study of the dynamics of vessels, the response is described by
a system of linear equations for small motions. By linearization, the six nonlinear
coupled equations of motion are reduced to two sets of three linear equations. In
this linearized model, the out-of-plane modes (yaw, sway and roll) are decoupled
from the in-plane modes (pitch, heave and surge). This approach, therefore, neglects
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the sometimes pronounced e¬ects of nonlinear coupling. These coupling e¬ects often
take the form of a parametric resonance, which can lead to a particularly dangerous
situation.

The possibility of large-amplitude roll motions and even capsizing due to the non-
linear interactions among the modes, which necessarily requires a multi-degree-of-
freedom nonlinear formulation, began to be recognized with Froude’s observation.
Froude observed undesirable rolling motions due to the coupling e¬ects between the
heave and roll modes in the middle of the 19th century. However, research on non-
linear interactions between the modes was not pursued until the middle of the 20th
century.

Paulling & Rosenberg (1959) attempted to address the indirect excitation of the
roll mode due to energy transfer from either of the directly excited heave or pitch
modes. They linearized the roll equation (it contains a time-varying coe¯ cient) by
assuming harmonic pitch and heave motions and then used the resulting Mathieu
(or Hill) equation to determine conditions for the stability of trivial solutions (no-roll
motions). With this approach, however, the predicted roll angle grows exponentially
with time, which is unrealistic.

Kerwin (1955), Kinney (1961), Blocki (1980), Bass (1982), Feat & Jones (1984) and
Sanchez & Nayfeh (1990) followed a reasoning similar to that of Paulling & Rosen-
berg (1959) and derived linear and nonlinear Mathieu equations. They included
linear and/or nonlinear damping terms and nonlinear restoring moments in the
Mathieu-equation-based roll equation and studied the case of parametrically excited
roll motions, in which energy is fed to the roll mode by the prescribed pitch or heave
motion, or, equivalently, wave motion.

Blocki (1980), among others, considered a ship with only two degrees of freedom
(heave and roll). Such a restriction (the elimination of pitch) implies that the ship is
symmetric with respect to the midship section (sometimes called fore-and-aft sym-
metry) and in a beam wave. Attempting to satisfy such limitations, Blocki (1980)
used a simple model of a half cylinder in a beam wave in his experiments. In his
analysis, he ignored the wave-induced roll moment, an obvious inconsistency but a
reasonable approximation when the slope of the waves is small and the wavelength is
large compared with the beam of the model. He attempted to address the paramet-
rically excited roll motion in the presence of only the heave by assuming that pitch
does not occur ( ³ º 0).

Oh et al . (1992) improved on the previous theoretical work. They described the real
situation more accurately than Blocki (1980) or Sanchez & Nayfeh (1990). Specif-
ically, they lifted the restriction of fore-and-aft symmetry, added a third degree of
freedom (pitch), and considered head and following waves both theoretically and
experimentally. The heave and pitch motions were assumed to be independent of
the roll motion, an assumption that was veri­ ed experimentally. These motions were
considered simultaneously and assumed to be harmonic. Due to the heave{pitch{
roll coupling, the amplitudes and frequencies of the heave and pitch motions play
the roles of an e¬ective amplitude and frequency of the parametric excitation. The
parametric term in the roll equation accounts for the time-dependent variation of
the metacentric height. They investigated the principal parametric resonance case,
in which the wave frequency is approximately twice the natural frequency in roll.

We consider a model supported with three degrees of freedom: roll ( ¿ ), pitch (³ )
and heave (z). A model set of equations of motion can be written in the following
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form (Lewis 1989):

�z + 2 ± z _z + !2
zz = Z(t); (2.1)

�³ + 2 ± ³
_³ + !2

³ ³ = £ (t); (2.2)

�¿ + !2
¿ ¿ + 2 · 1

_¿ + 2 · 3
_¿ 3 ¡ ¬ 3 ¿ 3 ¡ 1

2
(K ¿ z ¿ z + K ¿ ³ ¿ ³ + K _¿ _z

_¿ _z + K _¿ _³
_¿ _³ ) = K(t);

(2.3)

where ± z and ± ³ are damping coe¯ cients; !z , ! ³ and ! ¿ are the natural frequen-
cies; · 1 and · 3 are linear and cubic roll damping coe¯ cients; ¬ 3 is the constant
cubic `sti¬ness’ coe¯ cient; K ¿ z , K ¿ ³ , K _¿ _z and K _¿ _³ are the constant coe¯ cients of
the quadratic coupling terms; and Z , £ and K are the wave excitations. Blocki (1980)
ignored the kinematic{kinematic coupling and considered only heave and roll; thus,
he had only one (static{static) quadratic term: K ³ z ¿ z. Here, we include additional
static{static coupling as well as kinematic{kinematic coupling terms.

Assuming a simple harmonic wave excitation, we write

·Z(t) = ·Z0 cos « t; (2.4)

·£ (t) = ·£ 0 cos( « t + ½ ¼ ); (2.5)

where « is the frequency of the exciting waves, ½ ¼ is the phase delay of the pitch
moment relative to the heave force, ·Z0 is a measure of the amplitude of the heave
force, and ·£ 0 is a measure of the amplitude of the pitch moment. We note that ·Z0

and ·£ 0 are functions of the wave height as well as the position of the mass centre
in the wave. Equations (2.1) and (2.2) are uncoupled linear equations, and their
solutions can be expressed as

z = az cos( « t + ½ z); (2.6)

³ = a ³ cos( « t + ½ ³ ); (2.7)

where az and a ³ are the amplitudes of heave and pitch, respectively; ½ z and ½ ³ are
the phase lags of heave and pitch relative to the excitation wave; and ½ ³ is a function
of ± ³ and ½ ¼ .

We consider the case in which the ship is in head waves so that ·K(t) = 0 in
equation (2.3). Substituting equations (2.6) and (2.7) into equation (2.3), we obtain

�¿ + !2
¿ ¿ + 2 · 1

_¿ + 2 · 3
_¿ 3 ¡ ¬ 3 ¿ 3 + [f1 cos( « t + ½ z) + f3 cos( « t + ½ ³ )] ¿

+ [f2 sin( « t + ½ z) + f4 sin( « t + ½ ³ )] _¿ = 0; (2.8)

where

f1 = ¡ 1
2
azK ¿ z ; f2 = 1

2
« azK _¿ _z ;

f3 = ¡ 1
2
a ³ K ¿ ³ ; f4 = 1

2
« a ³ K _¿ _³

:
(2.9)

The straightforward expansion of the solution of equation (2.8) shows that reso-
nances occur when « =! ¿ º 1; 2; 4; : : : . The ­ rst two cases are known as the funda-
mental and principal parametric resonances, respectively. Blocki (1980) concluded
that the most dangerous case is principal resonance. Nayfeh & Sanchez (1990) pre-
sented the bifurcation diagram in terms of the frequency and amplitude of the exci-
tation, and showed that the principal resonance occurs at the smallest excitation
amplitude.
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Using the method of multiple scales (Nayfeh 1973, 1981; Nayfeh & Mook 1979),
Oh et al . (1992) found that, to the ­ rst approximation,

¿ (t) º a cos[ 1
2
( « t ¡ ® + ½ f )]; (2.10)

where

_a = ¡ · 1a ¡ 3
4
· 3!2

¿ a3 ¡ F a

2! ¿
sin ® (2.11)

a _® = a¼ +
3 ¬ 3

4! ¿
a3 ¡ F a

! ¿
cos ® ; (2.12)

« = 2! ¿ + ¼ ; (2.13)

and

1
2
(f1ei ½ z ¡ f2! ¿ ei ½ z + f3ei ½ ³ ¡ f4! ¿ ei ½ ³ ) = fei½ f : (2.14)

Here, f is an e¬ective amplitude, due to the combined in®uence of heave and pitch,
and a complex function of K ¿ z , K ¿ ³ , K _¿ _z , K _¿ _³ , az , a ³ , « , ! ¿ , ½ z and ½ ³ .

Periodic motions correspond to the ­ xed points of equations (2.11) and (2.12);
that is _a = 0 and _® = 0. There are two possibilities:

(1) a = 0 and the roll motion is not excited; and

(2) a 6= 0 and the roll motion is excited.

The stability of a given ­ xed point can be ascertained by investigating the eigenvalues
of the linearized equations (2.11) and (2.12) evaluated at the ­ xed point.

In ­ gure 1, we show a typical force{response curve for · 1 = · 3 = 0:04, ¬ 3 = 1:0,
and ¼ = 0:20, which exhibits a supercritical pitchfork bifurcation. When 0 f
± 2 = 0:2155, only the trivial solution exists, which is stable. When f > ± 2, there
are two solutions: the trivial solution, which is unstable, and a non-trivial solution,
which is stable. The value ± 2 corresponds to a supercritical pitchfork bifurcation.

In ­ gure 2, we show a typical force{response curve that exhibits a subcritical
pitchfork bifurcation. The values of the parameters are the same as in ­ gure 1,
except that the sign of ¼ is reversed. In the interval 0 f < ± 1 = 0:0957, only
the trivial solution exists, which is stable. When f1 f < ± 2 = 0:2155, there are
three solutions: the trivial solution, which is stable, and two non-trivial solutions, of
which the large one is stable and the small one is unstable. In an experiment, one
would never see motion corresponding to the small non-trivial solution. However,
one would expect to see one of two possible motions, either no roll (corresponding
to the trivial solution) or a rather-large-amplitude roll. The initial conditions, or
external disturbances, determine which motion develops. When ± 2 < f , there are two
solutions: the trivial solution, which is unstable, and a non-trivial solution, which is
stable. In this range, one would expect to see a large-amplitude rolling motion.

(b) Experiments

A series of experiments were conducted in the VPI & SU towing basin with a
wooden model of a tanker. The model is ca. 223:5 £ 29:2 £ 19:1 cm3. The weight of
the model and ballast is ca. 54.5 kg.
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Figure 1. A force{response curve that exhibits a supercritical pitchfork bifurcation in the case
of parametric resonance: · 1 = · 3 = 0:04, ¼ = 0:20, ! ¿ = 1, ¬ 3 = 1, f = 0:2155; stable (||),
unstable ({ { {).
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Figure 2. A force{response curve that exhibits a subcritical pitchfork bifurcation in the case of
parametric resonance: · 1 = · 3 = 0:04, ¼ = 0:20, ! ¿ = 1, ¬ 3 = 1, f = 0:2155; stable (||),
unstable ({ { {).

(c) Experimental set-up

The towing basin of the VPI & SU is ca. 30£1:8£2:5 m3. A plunger-type wavemaker
consisting of a ®at steel plate and hydraulic actuators is installed at one end. A set
of wave absorbers is placed behind the wavemaker and another set is placed at the
other end. There is a towing carriage on the rails of the basin, which was used as a
stationary mounting platform for the model in the present experiment.
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Figure 3. A schematic of the motion guidance system.

The model was free to move in heave, pitch and roll, while surge, sway and yaw
were completely constrained. Pitch and roll motions were possible up to §22¯ each.
The support for the heave motion (­ gure 3) consisted of a pair of 1.27 cm-diameter
hardened ground-steel rods and four linear bearings mounted on a steel plate. Heave
motions were possible up to §15:24 cm. The rotational apparatus was made of alu-
minium and consisted of two identical blocks and a pin-linkage system. It sat on
Plexiglas shim plates at the ®oor of the model. A variety of shim plates was used
to position the apparatus at the desired locations in the model. The linear-motion
device was linked to the rotational-motion device at its bottom. The angular dis-
placements in pitch and roll were measured by two RVDTs, which were ­ xed to the
shafts of the rotational-motion apparatus. The heave displacement was measured by
an LVDT, which was mounted on the supporting plate of the heave sta¬s and in the
middle of the two heave rods.

The wave heights were measured using two capacitance-type gauges. One was
mounted ahead of the bow and aligned with the centrelines of both the model and
the towing tank. It could be moved around the towing tank. The locations of the peak
amplitudes of the waves depended on the wave frequencies. The other was placed
amidships to monitor re®ected waves from the sidewalls of the towing tank. To
control and monitor the movement of the wavemaker, a 61 cm LVDT was mounted
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on its top and aligned with the driving piston. Its signal and the signal from the
function generator were fed to the control box and an oscilloscope. The signal from
the wavemaker contained high-frequency noise, which was ca. 180¯ out of phase with
the signal from the function generator.

Two digital multimeters and a strip-chart recorder were used to monitor the
responses of the model. An A/D converter was used, and data acquisition was done
with a commercial software package. Data were stored on a personal computer. Two
microprocessors analysed most of the data.

The essential sensors, such as the RVDTs, LVDTs, two wave-level gauges, and all
the peripheral electronic instruments were calibrated before being installed to check
the linearities and to obtain scale factors for the physical quantities.

(d ) Experimental procedure

Tests were done without a model to map the frequencies and amplitudes for which
the wavemaker produced plane waves. It was observed that operating the wavemaker
at ca. 0.60 Hz produces plane waves for the widest range of amplitudes. Because
interest was focused on the principal parametric resonance, weights were distributed
inside the model so that its natural frequency in roll (ca. 0.32 Hz) was about half of
the optimal frequency of the waves (ca. 0.6 Hz).

With the model in place, the wavemaker was started at the lowest amplitude
available. The amplitude was then increased very slightly to the next step in the
function generator, while the behaviour of the model in the waves and various signals
were continuously monitored. A period ranging from 1/2 h to 4 h, depending on the
amplitude and frequency of waves being generated, was required to achieve a steady
state. After reaching the maximum amplitude of the waves available in the present
experimental set-up, the wave amplitude was slowly decreased.

During this process, jumps up and down were observed, and the range of wave
amplitudes where roll motions exist was obtained. When the jump up did not occur
spontaneously, external disturbances of various kinds were imposed on the model
at each step of the wave amplitude; these disturbances produced large-amplitude
stable roll motion in many cases. Videotape recordings and/or photographs were
made during the tests.

(e) Results

In ­ gure 4, experimental force{response curves are shown. The arrows indicate
the direction of sweep. As the wave amplitude was slowly increased, rolling did not
occur until the wave height reached a certain critical value ( ± 2). Then large-amplitude
rolling suddenly occurred (the jump-up phenomenon). When the wave amplitude was
increased continuously beyond the jump-up bifurcation value ( ± 2), the amplitude of
the roll motion remained almost constant or even decreased, instead of increasing
monotonically as predicted by the theory.

After reaching the maximum height possible in our experimental set-up, the wave
amplitude was slowly reduced. The large-amplitude rolling continued at wave heights
below the jump-up bifurcation value ( ± 2). When the wave amplitude was decreased
further to another critical value (± 1; ± 1 < ± 2), the large-amplitude rolling suddenly
died out (the jump-down phenomenon), and no discernible rolling existed below ± 1.
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Figure 4. A typical experimentally obtained force{response curve in the case of parametric
resonance for a wave frequency of 0.58 Hz; the model is at antinode 5 in ¯gure 5.

In the range of wave amplitudes between the jump up ( ± 2) and jump down
( ± 1) bifurcation values, a stable non-rolling motion coexisted with a stable large-
amplitude rolling motion, which was sometimes as large as §20¯. When the model
was not exhibiting any noticeable roll, some disturbances in the roll mode could
cause a jump up to large-amplitude steady-state rolling anywhere between ± 1 and
± 2. The domain of attraction (i.e. the set of disturbances) for large-amplitude rolling
increased as the wave amplitude increased toward ± 2. This subcritical type of insta-
bility was observed at all locations of the model in the standing waves for a wave
frequency of 0.60 Hz.

The coexistence of two motions for the same wave pattern is evident in ­ gure 4. The
wave frequency is 0.60 Hz at location number 4 (see ­ gure 5). The sequence of events
is marked by arrows from A to H; A ! H ! B ! C ! D ! E ! F ! G ! H ! A.
The wave amplitude marked at point H corresponds to ± 1, and the one at point C
corresponds to ± 2. Just after the wave amplitude passed point C, a sudden jump
up to point D occurred. Thereafter, the roll-free motion was unstable and only the
large-amplitude rolling was stable.

After point E, the wave amplitude was decreased slowly. The large-amplitude
rolling existed below point D, where the jump up occurred during the sweep up.
When the wave amplitude was decreased to slightly below G, a sudden jump down
to point H occurred and rolling stopped. Between H and C, two di¬erent stable
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6 7 8 1 2 3 4 5

Figure 5. The various positions of the model in the wave. The centre of mass is
positioned at the points numbered with respect to the wave.

motions exist: the non-rolling motion and the large-amplitude rolling. The motion
that develops depends on the initial conditions. It was surprising to observe such
large-amplitude rolling of the model in waves of such small amplitudes just before
the jump down, but we recall that the theory predicts that small pitch and heave
motions can excite relatively large rolling.

The responses in heave and pitch were nearly linear during the whole test, regard-
less of the magnitude of the roll response and the occurrence of jumps. In ­ gures 6{8,
fast Fourier transforms (FFTs) and time traces corresponding to three points on the
curves in ­ gure 4 are plotted. Figure 6 shows the FFTs and corresponding time sig-
nals at point B. The ­ rst harmonic components of all the responses of heave, pitch
and roll are at the same frequency as the wave. The roll is not discernible with the
naked eye there. Figure 7 corresponds to point D (i.e. just after the jump up). The
roll response has the largest peak at half the frequency of the waves, which is a
dramatic change from ­ gure 6. The heave and pitch continue at the same frequency
as the waves. In ­ gure 8, plots of the responses at point H (i.e. just after the jump
down) are shown. The large peak at half of the frequency of the waves disappeared
and the slight rolling returned to the frequency of the waves. The magnitude of roll
motion decreased drastically and was not noticeable with the naked eye.

(f ) In° uence of modal position with respect to waves

Experiments were also conducted to show the dependence of the response on the
location of the centre of gravity of the model along a wavelength of the standing
waves. These results are relevant to the questions of dynamic course instability and
instability of the motion of a ship when it is navigating with the same speed as the
waves, so that its encounter frequency is nearly zero.

The jump-up and jump-down bifurcation values ( ± 2) and ( ± 1) varied with the dif-
ferent positions of the model in the waves. These observations are consistent with the
work of Renilson & Driscoll (1982). Renilson & Driscoll (1982) and Spyrou (1996a; b,
1997) concluded from experiments conducted in the large circulating water channel
(CWC) at the National Maritime Institute that the motion, the magnitude and direc-
tion of the side force, and the possibility of a ship broaching while operating in slowly
overtaking following or quartering regular waves, are dependent on its longitudinal
position in the wave system. They actually considered the case of zero frequency of
encounter. They found that a wave-induced longitudinal force could lead a ship to a
steady-state position relative to the waves; at this point, the ship and the `following’
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Figure 6. The spectra and time traces corresponding to point B in ¯gure 4.

waves are moving at the same speed. They showed that the response of a ship varies
over the wavelength, and that the e¬ects of heel angle due to rolling motion can lead
to course instability, such as broaching.

Spyrou (1996a) analysed the dynamic instability of a ship due to surf-riding in
quartering seas (i.e. the situation in which the ship is forced to move with the
wave due to the longitudinal wave force). He showed that the surf-riding states
form a closed curve in state space and that fold and Hopf bifurcations take place.
He explained the link between surf-riding and broaching on the basis of a homo-
clinic connection associated with surf-riding. He analysed the process of escape from
surf-riding, and, on the basis of the ­ nal state of the ship, described the arrange-
ment of the domains of broaching, capsizing, surf-riding and overtaking-wave periodic
motion in the plane of Froude number and ship heading (Spyrou 1996b). He anal-
ysed a cumulative-type broaching that may occur when the speed of the ship is
not close to that of the wave (Spyrou 1997). He identi­ ed a mechanism based on a
period-doubling bifurcation followed by a jump to resonant yaw from a cyclic-fold
bifurcation.

We placed the model at various positions along a wavelength of the same standing
waves with a frequency of 0.60 Hz. The relative locations are numbered 1{8 in ­ gure 5.
The node is numbered 1, the antinode is 5, and so on. Changing the location of the
ship along the wavelength changes the phase between the pitch and heave motions,
and, hence, changes the e¬ective amplitude of the parametric excitation of the roll
mode.
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Figure 7. The spectra and time traces corresponding to point D in ¯gure 4.

The results (Oh et al . 1992) show that the heave amplitude is proportional to the
wave amplitude at a speci­ c location along a wavelength of the standing waves, which
is the linear response as expected. In other words, the heave amplitude is largest at
the antinode (location number 5) where the wave amplitude is largest; the heave
amplitude is smallest at the node (location number 1) where the wave amplitude
is smallest; and the heave amplitudes at other locations can be arranged in proper
downward order from antinode to node according to the wave amplitudes at speci­ c
locations. Moreover, the pitch amplitude is proportional to the wave slope at each
speci­ c location along a wavelength of the standing waves, which is also expected
from the linear results. They are generally opposite in order to the heave responses:
the pitch amplitude is largest at the node (location number 1) where the wave slope is
largest; the pitch amplitude is smallest at the antinode (location number 5) where the
wave slope is smallest; and the pitch amplitudes at other locations can be arranged
in proper downward order from node to antinode according to the wave slopes at
speci­ c locations.

The e¬ective amplitude of the parametric excitation of the roll mode is produced by
the combined role of heave and pitch, and, hence, varies with the location of the centre
of gravity in the wave form even when the wave frequency is ­ xed. Location number 2
produced the seventh largest heave amplitude out of the eight locations considered,
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Figure 8. The spectra and time traces corresponding to point H in ¯gure 4.

the second largest pitch amplitude, and the largest amplitude of the upper-branch roll
motion. Location number 1 (the node) produced the smallest heave, the largest pitch,
and the second largest roll amplitude. Location number 5 (the antinode) produced
the largest heave, the smallest pitch, and the third largest roll amplitude. Location
number 6 produced the second largest heave, the seventh largest pitch, and the
smallest roll amplitude, and so on. Hence, the present study signi­ cantly extends
the work of Blocki (1980) and Sanchez & Nayfeh (1990). In the real motion, the ship
will necessarily experience pitch; therefore, the pitch mode should be included along
with the heave in investigating the parametric resonance of the roll mode.

3. Autoparametric resonance

Strong coupling between pitch and roll was ­ rst mentioned by Froude in 1863. He
observed that a vessel whose natural frequency in heave is twice its natural frequency
in roll has undesirable seakeeping characteristics. For a century after Froude stated
his observations, no research related to this phenomenon was pursued. Then Kerwin
(1955), Paulling & Rosenberg (1959), Kinney (1961) and Blocki (1980) investigated
the in®uence of a prescribed heave motion on the roll motion. Paulling & Rosen-
berg (1959) studied the e¬ect of the two-to-one ratio of frequencies analytically and
experimentally. They considered a model with only two degrees of freedom, heave
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and roll. Then they considered the heave motion to be a prescribed simple-harmonic
oscillation. In deriving the equation of motion for roll, they included a quadratic term
to account for the roll{heave coupling, a product of the roll and heave displacements.
Finally, because the heave motion was prescribed, they found that a linear Mathieu
equation governed roll; the time-dependent coe¯ cient was the function describing
the heave motion in the quadratic term. Unsurprisingly, they found that roll could
be excited by means of a parametric resonance. Of course, such an analysis predicted
an in­ nitely growing roll motion.

In the analytical models mentioned above, heave in®uenced roll, but roll did not
in®uence heave. The experimental models of Paulling & Rosenberg (1959) and Blocki
(1980) were constructed to conform with the analysis. Their models were rigidly
constrained to eliminate all degrees of freedom except roll and heave. A simple-
harmonic heave oscillation was then impressed on the model, which otherwise was
sitting in calm water. They observed heave-induced roll as predicted. The principal
shortcoming of their study was that the heave motion was prescribed; hence, the
e¬ects of the roll motion and the waves on the heave motion were not taken into
account.

During the last few decades, interest in the excitation of roll by heave and/or pitch,
or, equivalently, head or following waves, has increased considerably. Nayfeh et al .
(1973) and Mook et al . (1974) extended the model set of equations used by Paulling &
Rosenberg (1959) by considering two nonlinearly coupled equations governing pitch
and roll. In their equations, pitch is not prescribed but is coupled to the roll motion;
consequently, the pitch (heave) and roll motions are determined simultaneously as
functions of a prescribed wave motion. They explained the signi­ cance of the two-to-
one ratio of frequencies in causing undesirable roll behaviours. Among other things
they found the saturation phenomenon, jumps, and regions where periodic responses
to periodic excitations do not exist.

Nayfeh (1988) considered the nonlinearly coupled roll and pitch motions of a ship in
regular head waves. The coupling is through hydrostatic terms. The pitch frequency
is approximately twice the roll frequency, and the encounter frequency is near to
either the pitch or the roll natural frequency. He found the saturation phenomenon
when the encounter frequency is near the pitch natural frequency and the existence
of Hopf bifurcations and, hence, complicated motions. Nayfeh & Oh (1995) extended
the work of Nayfeh (1988) by using a linear-plus-quadratic damping model for roll
and investigated the case of primary resonance for pitch. They found supercritical
and subcritical instabilities, periodic motions, periodically and chaotically modulated
motions, period-doubling bifurcations, and the coexistence of multiple solutions and
associated jumps. The quadratic damping eliminated the saturation phenomenon.

(a) Theoretical analysis

In this section, we summarize the results of Nayfeh (1988), and Nayfeh & Oh
(1995) for the case « = 2!2 + ¼ 2 and !2 = 2!1 + ¼ 1.

We consider a ship that is restricted to pitch and roll and study its response to a
regular sea. We assume that the ship is laterally symmetric. We introduce a body-
­ xed coordinate system Oxyz such that its origin O is at the centre of mass, the
x-axis is positive toward the bow, the y-axis is positive toward starboard, and the
z-axis is positive downward. The orientation of the ship with respect to an inertial
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frame OXY Z is de­ ned by the Euler angles ¿ and ³ as follows: ³ is a pitch-like
rotation about the original y-axis, and ¿ is a roll-like rotation about the new x-axis.
The components p and q of the angular velocity about the x- and y-axes are related
to ¿ , ³ , _¿ and _³ by

p = _¿ and q = _³ cos ¿ : (3.1)

The equations of motion can be written as

Ixx _p ¡ Ixzpq = K + K0 cos « t; (3.2)

Iyy _q + Ixzp2 = M + M0 cos( « t + ½ ); (3.3)

where Ixx, Iyy and Ixz are the moments and product of inertia, « is the encounter
frequency, K0 and M0 are the amplitudes of the moments produced by the waves, and
½ is a phase; all are assumed to be constants. Assuming the hydrodynamic moments
K and M to be analytic functions of ¿ and ³ and their derivatives, taking symmetry
into account, adding a quadratic roll damping term, and eliminating interactions
between ­ rst and second derivatives as well as terms that are quadratic in the second
derivatives, we obtain

K = K ¿ ¿ + K _¿
_¿ + K �¿

�¿ + K ¿ ³ ¿ ³ + K ¿ _³ ¿ _³ + K ¿ �³ ¿ �³

+ K ³ _¿ ³ _¿ + K ³ �¿ ³ �¿ + K _¿ _³
_¿ _³ ¡ K _¿ _¿

_¿ j _¿ j +cubic terms; (3.4)

M = M ³ ³ + M _³
_³ + M �³

�³ + 1
2
M ¿ ¿ ¿ 2 + M ¿ _¿ ¿ _¿ + M ¿ �¿ ¿ �¿

+ 1
2
M ³ ³ ³ 2 + M ³ _³ ³ _³ + M ³ �³ ³ �³ + 1

2
M _¿ _¿

_¿ 2 + 1
2
M _³ _³

_³ 2 + cubic terms; (3.5)

where the stability derivatives must be obtained from other considerations. Nayfeh et
al . (1973, 1974) showed that self-sustained ship oscillations exist unless the following
relations are satis­ ed:

K ¿ _³ = K ³ _¿ = M ¿ _¿ = M ³ _³ = 0; (3.6)

K ¿ ³ = M ¿ ¿ ; (3.7)

K ³ �¿ + 4K ¿ �³ ¡ 2K _¿ _³ = M _¿ _¿ + 2M ¿ �¿ : (3.8)

Substituting equations (3.1) and (3.4){(3.8) into equations (3.2) and (3.3), and noting

that q = _³ + cubic terms, we obtain

�¿ + !2
1 ¿ = ¡ 2 · 1

_¿ ¡ · 3
_¿ j _¿ j + ¯ 1 ¿ ³ + ¯ 2 ¿ �³ + ¯ 3 ³ �¿ + ¯ 4

_¿ _³ + F1 cos « t; (3.9)

�³ + !2
2 ³ = ¡ 2 · 2

_³ + ¬ 1 ¿ 2 + ¬ 2 ¿ �¿ + ¬ 3 ³ 2 + ¬ 4 ³ �³ + ¬ 5
_¿ 2 + ¬ 6

_³ 2 + F2 cos( « t + ½ );
(3.10)

where

f!2
1 ; 2 · 1; ¯ 1; ¯ 2; ¯ 3; ¯ 4; F1g

= [Ixx ¡ K �¿ ]¡1f¡ K ¿ ; ¡ K _¿ ; K ¿ ³ ; K ¿ �³ ; K ³ �¿ ; K _¿ _³ + Ixz; K0g; (3.11)

f!2
2 ; 2 · 2; ¬ 1; ¬ 2; ¬ 3; ¬ 4; ¬ 5; ¬ 6; F2g

= [Iyy ¡ M �³ ]¡1f¡ M ³ ; ¡ M _³ ; 1
2
M ¿ ¿ ; M _¿ _¿ ; 1

2
M ³ ³ ; M ³ _³ ; 1

2
M _¿ _¿ ¡ Ixz; 1

2
M _³ _³ ; M0g:

(3.12)
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Using the method of multiple scales (Nayfeh 1973, 1981; Nayfeh & Mook 1979),
Nayfeh (1988), and Nayfeh & Oh (1995) obtained an approximate solution of equa-
tions (3.9) and (3.10) in the form

¿ = a1 cos( 1
2
« t ¡ 1

2
® 1 ¡ 1

2
® 2 + 1

2
½ ); (3.13)

³ = a2 cos( « t ¡ ® 2 + ½ ); (3.14)

where

_a1 = ¡ · 1a1 + ¤ 1a1a2 sin ® 1 ¡ 4 · 3!1

3 º
a1ja1j; (3.15)

_a2 = ¡ · 2a2 ¡ ¤ 2a2
1 sin ® 1 + f sin ® 2; (3.16)

a1
_­ 1 = ¡ ¤ 1a1a2 cos ® 1; (3.17)

a2
_­ 2 = ¡ ¤ 2a2

1 cos ® 1 ¡ f cos ® 2; (3.18)

and

4!1 ¤ 1 = ¯ 1 ¡ !2
2 ¯ 2 ¡ !2

1 ¯ 3 + !1!2 ¯ 4; (3.19)

4!2 ¤ 2 = ¬ 1 ¡ !2
1( ¬ 2 + ¬ 5); (3.20)

!2f = 1
2
F2; (3.21)

® 1 = ¼ 1t + ­ 2 ¡ 2­ 1 and ® 2 = ¼ 2t ¡ ­ 2 + ½ : (3.22)

Periodic motions correspond to a0
i = 0 and ® 0

i = 0; that is, to the ­ xed points of
equations (3.15){(3.18) and (3.22). There are two possibilities. Firstly,

a1 = 0 and a2 =
f

p
¤ 1

¼ 2
2 + · 2

2

(3.23)

and the response is given by

¿ = 0 and ³ = a2 cos( « t + ½ ¡ ® 2) + ; (3.24)

which is essentially the linear solution. Secondly,

a2 = ¤ 1
1
4
(¼ 1 + ¼ 2)2 + · 1 +

4 · 3!1

p
¤ 2

3 º
a1

2 1=2

; (3.25)

and a1

p
¤ 2 = x is given by the algebraic equation

x4 + c3xjxj + c2x2 + c1x + c0 = 0; (3.26)

where

c0 = ( · 2
2 + ¼ 2

2)[ 1
4
( ¼ 1 + ¼ 2)2 + · 2

1] ¡ f2;

c1 = ( · 2
2 + ¼ 2

2)
8 · 1 · 3!1

3º
;

c2 = ( · 2
2 + ¼ 2

2)
4 · 3!1

3 º

2

+ 2 · 1 · 2 ¡ ¼ 2( ¼ 1 + ¼ 2);

c3 =
8 · 2 · 3!1

3 º
:

The response in this case is given by equations (3.13) and (3.14).
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When · 3 = 0 but a1 6= 0, equation (3.25) becomes

a2 = ¤ 1[1
4
( ¼ 1 + ¼ 2)2 + · 2

1]1=2 = a ¤
2; (3.27)

which is independent of a1 and f . Moreover, c1 = c3 = 0, and, hence,

a1 = ¤ 2[ ¡ 1 § (f2 ¡ ¡ 2
2 )1=2]1=2; (3.28)

where

¡ 1 = 1
2
¼ 2( ¼ 1 + ¼ 2) ¡ · 1 · 2; (3.29)

¡ 2 = ¼ 2 · 1 + 1
2
· 2( ¼ 1 + ¼ 2): (3.30)

The solution does not exhibit the saturation phenomenon unless · 3 = 0. Instead,
the amplitude a2 of the directly excited pitch mode, as well as the amplitude a1

of the roll mode, vary as functions of f . The stability of a given ­ xed point can
be ascertained by investigating solutions of the variational equations (3.15){(3.18)
and (3.22) around the ­ xed point.

In ­ gure 9, we show the variation of a1 and a2 with f for ¤ 1 = 1:0, ¤ 2 = 0:5,
¼ 1 = 0:3, ¼ 2 = 0:1, · 1 = 0:2, · 2 = 0:5 and · 3 = 0:6. In this case, ¡ 1 = ¡ 0:04
and, hence, equation (3.28) has one real root when f ± 2, where ± 2 º 0:1649.
Consequently, when f2 ± 2, the response is given by equation (3.24); the roll mode
is not excited because a1 = 0, and the pitch mode is linearly excited because a2

is given by equation (3.23). When · 3 = 0 and f > ± 2, the response is given by
equations (3.13) and (3.14), where a2 = a ¤

2 = 0:2828 = const: for all values of
f greater than ± 2, and a1 is given by equation (3.26). Hence, if an experiment is
performed by setting « º !2 and the detunings and damping coe¯ cients are such
that ¡ 1 < 0, one expects the pitch mode to dominate. This is initially so. But as f
increases beyond the critical value ± 2, a2 remains constant and equal to a ¤

2 (that is,
the pitch mode saturates) and the extra energy is spilled over into the roll mode.
The saturation value a ¤

2 can be very small if ¼ 1 + ¼ 2 and · 1 are small. The saturation
phenomenon was ­ rst discovered by Nayfeh et al . (1973).

When · 3 6= 0, the amplitude a2 of the pitch mode no longer exhibits the saturation
phenomenon. Instead, the amplitude a2 of the pitch mode grows nonlinearly rather
than staying at a constant value a ¤

2 as f increases beyond ± 2. However, the slope of
a2 for f ± 2 is still much less than that which corresponds to the case of linear
damping. With the introduction of the quadratic damping, the rate of increase of
the amplitude a1 of the roll mode with f is less than that in the case of · 3 = 0.
Consequently, as f increases beyond the bifurcation point ± 2, not all the extra energy
input to the pitch mode is spilled over into the roll mode.

In ­ gure 10, we show typical force{response curves when · 1 = · 2 = 0:04 and
¼ 1 = ¼ 2 = 0:5 for · 3 = 0:6 and · 3 = 0. In this case, equation (3.28) has only
one stable real root for f ± 2 ( ± 2 º 0:2517); two real roots for ± 1 f ± 2, where
± 1 º 0:04 when · 3 = 0 and ± 1 º 0:1020 when · 3 = 0:6. In the latter case, the
large root is stable and the small one is unstable. The large bifurcation value ± 2 is
a subcritical pitchfork and is independent of the value of · 3; the small bifurcation
value ± 1 is a saddle-node and increases as · 3 increases. When f ± 1, there exists
only one stable response given by equation (3.23), which is linear and consists solely
of the pitch mode. When ± 1 f ± 2, two stable solutions coexist with an unstable
solution; one of the stable responses is given by equation (3.23), and the other stable
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Figure 9. A force{response curve that exhibits a supercritical pitchfork bifurcation in the case
of autoparametric resonance for · 3 = 0 and 0.6; stable (||), unstable ({ { {).

solution is given by equations (3.25) and (3.26). The response of the ship in this
region depends on the initial conditions. When f ± 2, there exists only one stable
response, again given by equations (3.25) and (3.26). The response of the roll mode
exhibits the coexistence of two stable motions and the associated jump phenomenon
for both · 3 = 0 and · 3 = 0:6. The saturation phenomenon, which exists when
· 3 = 0, does not exist when · 3 = 0:6. When · 3 = 0:6, the amplitude a2 of the
pitch mode grows rather than remains constant as f increases beyond ± 2. Again, for
f ± 1, a2 increases and a1 decreases as · 3 increases.

Nayfeh & Oh (1995) found conditions for which the ­ xed points of the modulation
equations undergo a Hopf bifurcation as one of the control parameters is varied. After
the Hopf bifurcation occurs, amplitudes and phases of both the pitch and roll modes
are modulated. The modulation may be periodic or chaotic. The Hopf bifurcation
can be either subcritical or supercritical.

The bifurcated periodic solutions were found by a numerical algorithm, and Flo-
quet theory was used to analyse their stability. The limit cycles deform and lose
stability by either pitchfork or period-doubling bifurcations as either the encounter
frequency or the excitation amplitude is varied. The pitchfork bifurcation breaks the
symmetry of the limit cycle. The period-doubling bifurcations culminate in chaos.
Nayfeh & Oh (1995) characterized the di¬erent possible solutions (limit cycles and
chaotic attractors) using phase portraits, Poincaŕe sections, fast Fourier transforms,
and time traces. The chaotic solutions exhibit very irregular behaviour with broad-
band spectra.
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Figure 10. A force{response curve that exhibits a subcritical bifurcation in the case of
autoparametric resonance for · 3 = 0 and 0.6; stable (||), unstable ({ { {).

(b) Experiments

Experiments were conducted on a destroyer model in the towing basin at VPI & SU,
described in x 2 b.

(c) Description of the model

The model, hull no. 4794, is of a US Navy destroyer, similar in form to a con-
temporary KNOX class ASW frigate. The model was constructed and used by the
Carderock Division of the Naval Surface Warfare Research Center for resistance and
seakeeping studies during the 1960s. Because of its age, a data sheet with normal
model details and speci­ cations (i.e. scale ratio, full-scale dimensions, appendage
locations, moments of inertia) is not available. The hull does not have a rudder,
sonar dome, bilge keels or a propeller. Its principal particulars, as measured, are
Bm ax = 29:21 cm, D = 22:86 cm, displacement = 54:5 kg at design waterline (DWL),
L O A = 315 cm, da = df = dm = 10:16 cm, trim = 0:0 and L=B = 10:78.

The model was constructed from common pine. The interior was hollowed out to
a large extent. This feature is extremely useful because additional weight can be
distributed inside the model to produce the desired moments of inertia.

The measured natural frequencies of the unballasted model are 1.65 Hz in pitch,
1.45 Hz in heave, and 1.40 Hz in roll. Because the VPI & SU towing basin produces
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the best smooth, regular, plane waves at ca. 0.60 Hz, the most desirable two-to-one
ratio of natural frequencies for the model is a pitch or heave frequency of 0.60 Hz
and a roll frequency of 0.30 Hz. We attempted to ballast the model to its DWL and
simultaneously lower either the natural frequency of heave from 1.45 to 0.60 Hz or
that of pitch from 1.65 to 0.60 Hz. The lowest heave natural frequency achievable with
the model at the DWL is 1.26 Hz and that of pitch is 0.91 Hz; thus, it was impossible
to achieve optimal conditions. Consequently, with the natural frequency for pitch
adjusted to 0.91 Hz, the natural frequency for roll was adjusted to be ca. 0.46 Hz. The
model was excited in the pitch mode by waves having frequencies between 0.85 and
0.95 Hz. The wave heights achievable at these frequencies are considerably less than
those achievable at 0.6 Hz, but it turned out that the roll mode could be indirectly
excited by either the pitch or the heave mode, in the presence of a two-to-one internal
resonance, with relatively low-amplitude waves.

During the ­ rst stages of the research, the goal was simply to allow the model to
move with two degrees of freedom: roll and pitch. However, later it was decided to
include heave, which is the most prominent motion of a ®oating body. Furthermore,
for large-amplitude longitudinal waves, sway, yaw and, possibly, broaching occur con-
currently with roll motion, as pointed out by Taggart & Kobayashi (1970) and Eda
et al . (1979). However, in the present experiments, these motions were constrained.

Adjusting the natural frequencies is a painstaking process, because, if one char-
acteristic parameter is varied, all the others vary simultaneously, and the centre of
gravity of the weights and model must be remeasured. Many iterations are required.
To achieve the desired natural frequencies, we con­ gured the added weight as fol-
lows. Three compartments were built inside the model, two forward and one aft.
Each compartment was ­ lled with 9{11 kg of lead shot. A 2.3 kg weight was placed
aft at the top of the stern deck, and another was placed forward. The forward weight
was ­ tted on a threaded vertical rod that spans the distance from the keel to the
main deck. This arrangement allowed the vertical position of the centre of gravity to
be varied without changing its horizontal position and total displacement. Therefore,
detuning the pitch and roll natural frequencies from the two-to-one ratio could be
readily accomplished for a given displacement.

First we used a stopwatch to roughly check the natural frequency of each mode
with the model ®oating on the calm water of the towing basin. We then mounted the
model under the towing carriage and connected the cables of the motion-measuring
transducers with the data-acquisition instruments and spectrum analysers. We then
gave the model initial displacements to generate free oscillations and analysed these
data with the spectrum analysers. The model was tuned until the desired natural
frequencies, trim and waterline were reached.

The parameters used in one of the tests were ! ¿ = 0:495 Hz, ! ³ = 0:910 Hz and
« = 0:900. Hence,

¼ 1 = ! ³ ¡ 2! ¿ = ¡ 0:08 and ¼ 2 = « ¡ ! ³ = ¡ 0:01:

(d) Force{response curve

In the theory, the amplitude and frequency of the waves are used as control param-
eters. Either the excitation amplitude is varied slowly while the frequency is kept
constant, or the excitation frequency is varied slowly while the amplitude is kept
constant. In either case, the response of concern is the steady state.
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The duration of just one set of tests was as long as 10 days. Steady-state wave
conditions in the basin often require very long times to develop, as much as several
hours, for the following reasons. Firstly, in a ®uid with low viscosity, such as water,
transients need a long time to disappear; and secondly, because the water is contained
in a con­ ned space, the re®ected waves interact with the newly generated compo-
nents. The second e¬ect is strong just after the parameter change. Consequently, we
found it to be practically impossible to vary the frequency of a wave while keeping
its amplitude constant. Accordingly, we restricted the experiment: the amplitude
was slowly varied while the frequency was kept constant. Hence, we obtained only
force{response curves.

The primary ­ ndings of the present work are the subcritical instability and associ-
ated jump phenomena. The experiments were focused on capturing the critical wave
amplitudes at which large-amplitude roll motions occur and disappear. To obtain
the force{response curves, we swept the wave amplitude up and down through the
range where regular plane waves are generated.

In typical sweep-up and sweep-down processes, the jump phenomenon, the sub-
critical instability, and the coexistence of multiple responses to the same excitation
were observed. These results are in good qualitative agreement with the theoreti-
cal results predicted in Nayfeh & Oh (1995). If a large-amplitude roll motion did
not occur spontaneously during the sweep-up/sweep-down process, various external
disturbances were imposed on the model in an attempt to obtain any coexisting
large-amplitude roll motion.

In ­ gure 11, we show a typical force{response curve exhibiting a subcritical pitch-
fork bifurcation obtained from the present experiments. These experimental results
are consistent with the results predicted in Nayfeh & Oh (1995). A comparison of
­ gures 10 and 11 reveals many similarities:

(a) the subcritical instability;

(b) the coexistence of large-amplitude and trivial roll motions;

(c) the associated jump phenomena in the range between the two bifurcation points
± 1 and ± 2 of the wave amplitude, as shown in ­ gure 8, and the points L and C
in ­ gure 11;

(d) the breaking of the saturation phenomenon; and

(e) the nonlinear growth of the directly excited pitch mode.

In ­ gure 11, the sweep-up process covers the increase in wave amplitude from
point A to point H, and the sweep-down process covers the decrease in wave ampli-
tude from point H to points L and A. The sequence of events is marked by arrows
and capital letters from A ! B ! ! K ! L ! A. As the excitation amplitude
was increased slowly from A to C, only roll-free motion existed. The wave amplitude
at point L corresponds to ± 1, and at point C it corresponds to ± 2 in ­ gure 10.

A jump up was observed as the excitation amplitude exceeded a critical value,
denoted by point C. This jump led to a large-amplitude roll motion. The jump-up
point is marked as point D. To ascertain the stability of the large-amplitude roll
response, we constrained the model to have a roll-free response. However, when the
constraint was removed from the model, the response returned to the large-amplitude
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Figure 11. A typical experimentally obtained force{response curve in the case of autopara-
metric resonance for a wave frequency of 0.91 Hz; the model is at antinode 5 in ¯gure 5.

roll motion. The time traces and the spectra of the roll, pitch, heave and wave motions
are shown in ­ gures 12 and 13, respectively corresponding to points B and D. It is
very clear from these ­ gures that there are no signi­ cant changes in the pitch, heave,
and excitation signals. However, the roll signal displays drastic changes: ­ rstly, the
roll amplitude has increased to a very large value (note the scales of the plots);
secondly, in the FFT results, the largest peak of the roll appears at the subharmonic
of order one-half, while the largest peaks of the pitch and heave are at the wave
frequency.

When the excitation amplitude was increased further from point D to E, the
roll amplitude did not increase; instead it decreased, which is inconsistent with the
theoretical result given in ­ gure 10.

In the sweep down, as the wave amplitude was decreased from point J, the response
became similar to the one at point D. As the wave amplitude was further reduced
from point J to point K, the large-amplitude roll motion continued below the wave
amplitude at which the upward jump occurred. This is the subcritical instability. The
roll amplitude increased gradually and then decreased; in this interval, the shape of
the experimental force{response curve resembles the one predicted by the theory
(­ gure 10). In ­ gure 14 the results are shown for point K, where the roll amplitude
is the largest among the cases considered so far along the curve. We also note that
at point K the roll amplitude is very large, up to §18¯, while the amplitudes of the
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Figure 12. The spectra and time traces corresponding to point B in ¯gure 11.

pitch, heave and wave are much smaller than those at points D and J. If one could
observe the model for conditions corresponding to point K, one would be surprised
that the model has such a large-amplitude roll in response to such a small wave.

When the excitation amplitude was slightly decreased below point K, a dramatic
change occurred: the large-amplitude roll motion suddenly disappeared in a down-
ward jump from a stable large-amplitude roll response to a stable roll-free response
(from point K to point L).

It is di¯ cult to predict when the upward and downward jumps in roll occur. They
occur suddenly and the transitions passed so quickly that we were usually unable to
acquire the digitized data. However, one downward jump was captured in digitized
form, and the time traces and spectra for pitch and roll are presented in ­ gure 15. One
sees that the roll motion changed very sharply and that the pitch motion changed
only slightly. The upward jump is similar except that the right-hand and left-hand
sides of the time traces would be reversed.

During the entire sweep-up and sweep-down processes, the heave exhibited simple
linear behaviour, regardless of the roll response, and the pitch exhibited neither linear
nor saturated behaviour. This is in accord with theory (Nayfeh & Oh 1995). This
result implies that initially, as the wave energy was fed into the pitch mode, the pitch
response grew linearly with wave amplitude, while the roll remained very small. When
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Figure 13. The spectra and time traces corresponding to point D in ¯gure 11.

the wave amplitude increased beyond a certain critical value, the pitch response grew
nonlinearly with wave amplitude, with its growth rate being much smaller than the
linear rate, and the roll mode acquired a large amplitude. Thus, beyond the critical
wave amplitude, a signi­ cant portion of the input energy was spilled over into the
roll mode, while the small remaining portion increased the amplitude of the pitch
mode slightly above the amplitude in the saturated case.

The energy transfer from the pitch mode to the roll mode is due to strong nonlinear
couplings between these modes. The strong couplings are the result of the two-to-one
ratio of natural frequencies, which produces an internal resonance. Because of the
internal resonance, the large-amplitude roll motion occurred at wave amplitudes in
the range 0.2{0.8 in (RMS), which is much smaller than those (1.0{4.0 in (RMS))
required to excite the roll motion in the absence of the internal resonance (see Oh
et al . 1992). The two modes might be coupled nonlinearly; however, when there is
no internal resonance to strengthen the nonlinear couplings, the energy fed into the
heave mode is not transferred as easily to the roll mode.

It follows from the force{response curves that, as the wave amplitude is increased,
the roll amplitude remains constant, decreases, and even dies out. Speci­ cally, if the
wave amplitude was increased continuously beyond the bifurcation value, the roll
amplitude remained almost constant or even decreased instead of increasing mono-
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Figure 14. The spectra and time traces corresponding to point K in ¯gure 11.
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Figure 15. The time traces captured during the jump down.
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tonically as predicted by the theoretical approach. This was also observed by other
investigators (e.g. Dick et al . 1976). In the free-model scale experiments performed
in the sea, they found that when the model was at zero speed in head waves, the roll
amplitude was almost constant at higher wave heights, while the pitch amplitude
increased linearly as the wave height increased.

The supercritical (or pitchfork) type of instability was not found. It is conjectured
that higher-amplitude excitations are necessary.

4. Discrepancies between theory and experiment

We found good qualitative agreement between the theoretical and experimental
results. However, there exist several discrepancies.

We note from force{response curves that as the wave amplitudes are increased, the
magnitude of the large-amplitude roll motions decrease for all the cases considered
here. This has also been observed by other investigators (see, for example, Dick et
al . 1976). In the free-model scale experiment performed in the real sea, they showed
that when the model was at zero speed in head seas the roll amplitude was almost
constant at higher wave heights, while the pitch amplitude increased linearly as the
wave heights increased.

The discrepancies may be due to one or more of the following four reasons. Firstly,
the hydrostatic characteristics of a ship in waves can di¬er markedly from its charac-
teristics in calm water. Secondly, while the roll motion causes relatively small waves
that re®ect from the sidewalls of the tank, the heave and pitch motions generate rel-
atively large waves that also re®ect from the sidewalls and form transverse standing
waves on both sides of the model. The crests of these waves are a little aft of the mid-
ship section of the model, and they always meet the model just before the maximum
roll angle occurs. Consequently, the re®ected waves also act to limit the roll motion.
Thirdly, because the model can pitch as well as heave, the di¬erence in the phases
of these two modes might cause the e¬ective amplitude of the parametric excitation
to decrease. It is a combination of the heave and pitch motions that produces the
e¬ective parametric excitation in the roll equation. Fourthly, it is worthwhile to con-
sider the work of Eda et al . (1979) and Taggart & Kobayashi (1970). They showed
that signi­ cant coupling of roll and yaw can develop due to the asymmetry of the
underwater hull form of the heeled vessel. This is explained in the following way: the
asymmetric form acts as a cambered low-aspect-ratio lifting body, which, together
with the forward speed, produces sway forces and roll and yaw moments. When a
vessel has relatively small values of GM , this can lead to dramatic increases in roll
and yaw motions when the ship is operating in waves, a signi­ cant example of the
nonlinear process in the responses of a vessel. Thus, in a test when yaw and sway
motions are restricted, the reaction forces exerted on the vessel from the sides of the
tank could decrease the roll motion.

The coupling between the pitch and yaw motions is another nonlinear e¬ect that
may need to be considered to understand the experimental results. It occurs when
there is a drift angle between the vessel heading and the instantaneous velocity.

5. Summary

A theoretical and experimental study of the nonlinear dynamic characteristics and
stability of ®oating vehicles has been presented. To investigate the complicated

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1880 I. G. Oh, A. H. Nayfeh and D. T. Mook

responses of vehicles in regular waves, we modelled the vehicles by dissipative non-
linear dynamic systems subject to harmonic excitations. Two nonlinear mechanisms
that cause large-amplitude motions were investigated. The ­ rst mechanism is internal
or autoparametric resonance, the second is parametric resonance. They are exempli-
­ ed by addressing the phenomenon of the indirect excitation of the roll motion of a
vessel due to nonlinear couplings among its heave, pitch and roll modes.

The complicated responses due to nonlinear modal interactions were investigated
analytically for a two-degree-of-freedom system modelling the pitch and roll motions
of a vessel in the presence of a two-to-one internal resonance. These responses
included periodic and periodically and chaotically modulated motions, coexistence of
multiple motions, and jumps. Linear-plus-quadratic terms were used to model the roll
damping, and a linear term was used to model the pitch damping. Also, the dynamic
stability and large-amplitude motion of the roll mode due to an excitation of the
pitch and heave modes (which excite the roll mode through parametric resonance)
were studied. Because the physical models used in the present work are dissipa-
tive nonlinear dynamical systems subject to deterministic excitations, the results are
applicable to many mechanical and structural systems.

Experiments were performed on models of actual vessels: a tanker and a destroyer.
There were a number of previous experimental studies of the linear behaviour and
impulsive loading (such as slamming) of vessels. However, very few experiments have
been conducted to investigate the nonlinear couplings among the modes of motion
and the resulting extraordinary responses, which cannot be explained by using the
linear theory. The experiments demonstrated the jump phenomenon, the subcritical
instability, and the coexistence of multiple motions, which are frequently observed in
the response of many mechanical and structural systems. The experimental results
are qualitatively in agreement with the results predicted by the theory.

This work was supported by the O± ce of Naval Research under grant no. N00014-96-1-1123.
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